Purification and characterization of the nocardial acetylesterase involved in 2-butanone degradation.

نویسندگان

  • E F Eubanks
  • F W Forney
  • A D Larson
چکیده

An inducible acetylesterase (EC 3.1.1.6) that hydrolyzes ethyl acetate, an intermediate in the degradation of 2-butanone by Nocardia strain LSU-169, was purified. The polypeptide molecular weight as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 39,500, and the enzyme molecular weight determined by sucrose density gradient centrifugation was 84,000. The purified enzyme demonstrated aggregation in polyacrylamide gels. The esterase hydrolyzed p-nitrophenyl acetate, ethyl acetate, and methyl acetate; however, enzymatic hydrolysis of phosphates, sulfates, dipeptides, lactones, or the ethyl esters of N-benzoyl-l-tyrosine could not be detected. The apparent K(m) for esterase activity with p-nitrophenyl acetate as the substrate was 6.7 x 10(-5) M, and the maximal velocity (V) was 1,223 mumol/min per mg of protein at 30 C. With ethyl acetate as the substrate, the apparent K(m) was 3.6 x 10(-4) M and V was 1,026 mumol/min per mg of protein. No significant inhibition of esterase activity was obtained with organophosphates, mercuric compounds, eserine sulfate, sodium arsanilate, NaF, CaCl(2), CoCl(2), or MnCl(2). At concentrations from 7 x 10(-4) to 4 x 10(-3) M, 2-butanol and primary alcohols with chain lengths of four or more carbons inhibited esterase activity from 59 to 86%. Linear noncompetitive inhibition of esterase activity by 3-methyl-1-butanol with a K(i) of 1.0 x 10(-3) M was demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of new spinel Mn0.5Cu0.5Cr2O4 and degradation of Malachite Green from wastewater in comparison with CuCr2O4

In this study phase- pure new spinel structure, Mn0.5Cu0.5Cr2O4 was prepared by hydrothermal method successfully and the degradation of Malachite green as an organic pollutant was investigated and compared with CuCr2O4. Purification of obtained nanoparticles was measured by using X-ray diffraction method (XRD) in which crystal st...

متن کامل

Partial Purification and Characterization of the Recombinant Benzaldehyde Dehydrogenase from Rhodococcus ruber UKMP-5M

Background: Benzaldehyde dehydrogenase (BZDH) is encoded by the xylC that catalyzes the conversion of benzaldehyde into benzoate in many pathways such as toluene degradation. Objectives: In this study, the xylC gene from Rhodococcus ruber UKMP-5M was expressed in Escherichia coli, purified, and characterized.Materials and Methods: The xylC was amplified and cloned in E. coli. The re...

متن کامل

Purification and Characterization of Alginate Lyase from Mucoid Pseudomonas aeruginosa Strain 214

Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of infections in compromised patients. The ability of Pseudomonas aeruginosa to produce chronic infection is based in part on its ability to biosynthesis of biofilm, and alginate is the major polysaccharide in the synthesized biofilm. So alginate degradation is very essential in the dispersion of Pseudomonas aeruginosa bi...

متن کامل

Biochemical characterization of recombinant benzyl alcohol dehydrogenase from Rhodococcus ruber UKMP-5M

Benzyl Alcohol Dehydrogenase (BADH) is an important enzyme for hydrocarbon degradation, which can oxidize benzyl alcohols to aldehydes, while being capable of catalyzing a reversible reaction by reducing benzaldehyde. BADH is a member of medium chain alcohol dehydrogenases, in which zinc and NAD are essential for enzyme activity. This paper describes the expression, purification, and characteri...

متن کامل

Biochemical characterization of recombinant benzyl alcohol dehydrogenase from Rhodococcus ruber UKMP-5M

Benzyl Alcohol Dehydrogenase (BADH) is an important enzyme for hydrocarbon degradation, which can oxidize benzyl alcohols to aldehydes, while being capable of catalyzing a reversible reaction by reducing benzaldehyde. BADH is a member of medium chain alcohol dehydrogenases, in which zinc and NAD are essential for enzyme activity. This paper describes the expression, purification, and characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 120 3  شماره 

صفحات  -

تاریخ انتشار 1974